Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1132720070050020077
Genomics & Informatics
2007 Volume.5 No. 2 p.77 ~ p.82
Serotonin (5-HT) Receptor Subtypes Mediate Regulation of Neuromodulin Secretion in Rat Hypothalamic Neurons
Chin Chur

Kim Seong-Il
Abstract
Serotonin (5-HT), the endogenous nonselective 5-HT receptor agonist, activates the inositol -1,4,5- triphosphate / calcium (InsP3/Ca2+) signaling pathway and exerts both stimulatory and inhibitory actions on cAMP production and neuromodulin secretion in rat hypothalamic neurons. Specific mRNA transcripts for 5-HT1A, 5-HT2C and 5-HT4 were identified in rat hypothalamic neurons. These experiments were supported by combined techniques such as cAMP and a Ca2+ assays in order to elucidate the associated receptors and signaling pathways. The cAMP production and neuromodulin release were
profoundly inhibited during the activation of the Gi-coupled 5-HT1A receptor. Treatment with a selective agonist to
activate the Gq-coupled 5-HT2C receptor stimulated InsP3 production and caused Ca2+ release from the sarcoplasmic
reticulum. Selective activation of the Gs-coupled 5-HT4 receptor also stimulated cAMP production, and caused an
increase in neuromodulin secretion. These findings demonstrate the ability of 5-HT receptor subtypes expressed in neurons to induce neuromodulin production. This leads to the activation of single or multiple G-proteins which regulate the InsP3/Ca2+/PLC-¥ã and adenyl cyclase / cAMP signaling pathways.
KEYWORD
neuromodulin signaling, selective serotonin agonists, rat hypothalamus, cAMP, intracellular Ca2+
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI) KoreaMed